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Abstract

We present a novel approach to discriminating native and
nonnative utterances based on suprasegmental features ex-
tracted at the Accent Group (AG) level. Past studies have shown
modeling a set of shared intonation patterns across AGs to be
effective in predicting local f0 contour shapes. Here we demon-
strate that AG level prosodic features are also effective in na-
tiveness classification. The proposed suprasegmental feature
set is very low dimensional, and is derived from f0 and energy
contours across the AG, as well as normalized duration of the
syllables within each AG. A Random Forest back end classifier
is used to combine AG level scores from GMM and Decision
Tree models, producing nativeness scores at the utterance level.
The proposed prosodic nativeness classifier achieves 83.3% ac-
curacy for 2-AG utterances and 89.1% accuracy for 3-AG ut-
terances, exceeding a baseline Gaussian Supervector system’s
performance by more than 10% absolute. The vastly lower di-
mensionality of the proposed feature set relative to the base-
line method suggests the importance of suprasegmental features
over traditional spectral cues in contributing to the perceived na-
tiveness of a learner’s language.
Index Terms: nativeness, prosody, intonation, rhythm

1. Introduction

Mastering the suprasegmental characteristics of English–
including rhythm, stress, and intonation–is one of the most
widely encountered difficulties among English learners [1].
Nonnative speakers tend to impose prosodic patterns from their
first language onto their interpretation and pronunciation of any
foreign language, a process known as transfer. Because of the
importance of suprasegmental pronunciation to learner percep-
tion and intelligibility [1], it is crucial for learners of English
to study the suprasegmental patterns even in the early stages
of learning. Some studies, such as [2], suggest English rhyth-
mic entrainment through repetition of phrases sharing common,
iconic accent patterns. These pedagogical concerns have mo-
tivated researchers in automatic prosodic assessment to search
for a common unit of analysis that can capture learner pronunci-
ation variability on many suprasegmental levels simultaneously,
while allowing for an assessment paradigm that is generalizable
to any arbitrary utterance.

The parroting paradigm of second language instruction [3]–
i.e. one in which learners repeat phrases after a native-speaker
prompt–naturally lends itself to template based scoring algo-
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rithms such as those proposed in [4], where explicit compar-
isons between the learner and the native target are made with-
out recourse to deeper levels of model abstraction. However,
the limitations of this approach to scoring should be obvious:
students are assessed relative to one particular native realization
rather than to native speech in general, and no learner utterance
can be scored unless it is first recorded by a native speaker.

A favorable alternative, both for pedagogical and technical
reasons, is to conduct analysis at an intermediate linguistic level
that is large enough to capture the suprasegmental variability
that characterizes native speech, but also sufficiently short and
abstract so that such a unit could be recombined into any given
sentence. Because it satisfies both the generalizability and vari-
ability requirements, in this study we have selected the Accent
Group (AG) as our unit of suprasegmental analysis.

The Accent Group [5] is defined as a level in the prosodic
hierarchy existing between the Foot and the Intermediate
Phrase. For purposes of this study, we use the specification
given in [6, 7], where the term Left Headed Foot was suggested
to refer to what is in reality an Accent Group: an accented syl-
lable and all of the unaccented syllables following it (A Foot
is technically defined in terms of stress, not accent–and hence
more than one Foot can fall between any two adjacent accents.)
Though their terminology differed, the work in [6, 7] showed
that Accent Group based factorization effectively predicts local
frequency contour shapes for speech synthesis.

Suprasegmental features have been applied to many areas
of automatic speech processing, including speaker, language,
dialect, and accent classification [8, 9], and there exist many
approaches to modeling suprasegmental features at various lev-
els. Frame level features including statistics of f0, and energy
contours have been used for speaker identification [10]. How-
ever, the local dynamics of intonation also encode valuable in-
formation that long-term statistics do not capture. For exam-
ple, pitch movement patterns between adjacent frames have
been used in dialect distance assessment [11]. Furthermore,
larger-scale intonation movements have been modeled by fitting
a piecewise linear model to the f0 contour [8]. Recently, pseu-
dosyllable units have become increasingly popular as speech
units for suprasegmental feature extraction, especially in text-
independent tasks [9, 12]. The work in [13] presents a native-
ness classifier for English based on acoustic and prosodic fea-
tures. Their prosodic features are similar to those presented in
[9] for language identification, which are based on an approxi-
mation of f0 and energy contours at the pseudosyllable level.

In this work, we show that suprasegmental features derived
at the Accent Group level can classify nativeness in a corpus of
parroted speech prompts, with accuracy comparable to or better
than that of state-of-the-art spectral speech features extracted at



Japanese Learners Native English Speakers

Female Speakers 51 5

Male Speakers 44 11

Total Phrases 1478 1592

Total Hours 1.3 1.4

Table 1: Speech corpus statistics.

the more traditional frame level. Eventually such an algorithm
can be adapted to generate automatic suprasegmental scores for
arbitrary learner utterances in the context of a computer-assisted
language learning application.

2. Corpus

The speech data used in the experiments described below is
divided into two sub corpora: Japanese learner parroting, and
native English speaker parroting. All speakers parroted some
subset of 100 English phrases, hand-selected to represent a
variety in length, subject matter, and suprasegmental content.
Statistics about these sets are given in Table 1. The refer-
ence prompts were produced by 4 professional voicers (2 male,
2 female) and were previously used as actual prompts in the
Rosetta Stone Version 4 American English product. The learner
parroting recordings were collected in Japan, all from native
Japanese speakers. Though none of them were fluent in En-
glish, the speakers represented a wide range of English pro-
ficiency. All recordings selected for these experiments were
checked to ensure that they were at least devoid of noise and
that they were in-grammar; that is, that the student produced all
of the words in the prompt. These learners were not explicitly
told to parrot the reference prompts on the suprasegmental level.
The native speakers of English were all in-house employees
of Rosetta Stone, and none of them were professional product
voicers. Each speaker was explicitly instructed to try to match
the voicer’s rhythm and intonation, and they were allowed to
listen to the prompt and record their own version as many times
as they wanted. Though the recording conditions were not iden-
tical between the native and nonnative populations, this yielded
two very different data sets: one with presumably proficient na-
tive parroting, and one with learner parroting of diverse profi-
ciency. Automatic speech segmentation was done using forced
Viterbi decoding of the target utterance using Rosetta Stone’s
proprietary speech recognition system. The segmentation pro-
cess provided both word level and phoneme level alignments of
the speech data. The decoded sequence of phonemes was then
chunked into syllables based on each word’s expected syllabi-
fication according to a pronunciation dictionary. The decoding
grammar allowed for possible word deletion and silence inser-
tion, as to be expected in learner speech. f0 and energy contours
were estimated for each utterance. In addition, the locations of
pitch accents in the prompts (and hence the AGs) were anno-
tated by two experts, and any disagreement between them was
resolved through closer listening. AGs for the parroting speak-
ers were defined relative to the corresponding prompt.

3. Accent Group level prosodic features

In this study we extract suprasegmental features at Accent
Group level. As mentioned, an Accent Group is defined as an
accented syllable followed by all unaccented syllables until the
next accent or phrase boundary. In this study, we limit our anal-
ysis to polysyllabic Accent Groups (an accented syllable fol-
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Figure 2: Duration features: d1 represents the accented sylla-
ble, d2 the unaccented syllables. Both are normalized by d.

lowed by at least one unaccented syllable.) We extract three
categories of suprasegmental features based on f0, energy, and
duration within the Accent Group.

The intonation features are based on a polynomial approxi-
mation of the f0 contour. First, unvoiced segments are linearly
interpolated to achieve a continuously voiced estimate. Next,
these interpolated f0 contours are modeled with n-degree poly-
nomials:

P1x
n + P2x

n−1 + · · ·+ Pnx+ Pn+1 (1)

The coefficients are concatenated to obtain one (n + 1) di-
mensional feature vector of coefficients per Accent Group:
{P1, . . . , Pn+1}.

Polynomial curve fitting is performed in a least-squares
sense. Here we chose the degree n=5 and reduced the coeffi-
cient vectors to 4-dimensional, since the 5th coefficient is a bias
scalar representing the average pitch over the contour. Fig. 1
shows an example of an f0 contour polynomial approximation.
Fig. 1(a) is the original f0 estimate, and Fig. 1(b) represents
the interpolated and approximated versions of the contour. In
this case, the polynomial approximation seems to capture the
shape of the f0 movement with only 5 coefficients. We perform
the same polynomial approximation method for the energy con-
tour, to obtain a 4-dimensional coefficient vector representation
of the energy over each Accent Group.

We also estimated duration based features for each Accent
Group. Since the length and linguistic content of each Accent
Group can vary significantly, the absolute duration in seconds
would probably not offer much discriminative power. Instead,
we use relative durations of the accented and unaccented sylla-
bles, since those are common to all Accent Groups as we have
defined them. Fig. 2 illustrates a polysyllabic Accent Group
with three unaccented syllables. The big box represents the
accented syllable at the beginning of the AG, and the smaller
boxes represent the unaccented syllables. The proposed dura-
tion vector we estimated consists of three features: the normal-
ized duration of the accented syllable, d1/d; the normalized du-
ration of the sequence of unaccented syllables, d2/d; and the
total number of syllables in the Accent Group. These three fea-
tures approximate a very rough encoding of the rhythmic pat-
tern delineated by the syllables in the Accent Group. These
intonation, energy, and duration feature vectors were concate-
nated to obtain one 11-dimensional prosodic feature per Accent
Group, which was then used for utterance level classification,
as explained below.

4. Classification and results
4.1. Baseline

For comparison with our proposed suprasegmental method, we
attempted to duplicate the baseline system reported in [13].
Note that, here we only implement their acoustic classifier as
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Figure 1: (a) Original f0 estimate. (b) Polynomial approximation of the contour, over the interpolated contour from (a).

our baseline. Their approach adapted the Gaussian Supervec-
tor (GSV) speaker verification technique [14] to the nativeness
classification task. A GSV is a very long vector of features cre-
ated by concatenating the means of a trained Gaussian Mixture
Model (GMM). A Universal Background Model (UBM) is first
trained on all available training data; this takes the form of an
n-mixture GMM. For each test file, one iteration of Maximum a
Posteriori (MAP) model adaptation is performed on the UBM,
to create a new, unique GMM for each test file. The means of
that adapted UBM are then stacked to create the feature vectors
for nativeness classification, and then those vectors are classi-
fied using an external machine learning algorithm; in the case
of [13], that algorithm was a Support Vector Machine (SVM).

We used 39 PLP features (13 plus first and second order
delta coefficients) extracted using a 20 msec window at 10 msec
intervals, according to HTK’s implementation. The UBM was
trained with flat start initialization and an iterative procedure
of repeated alignment and embedded reestimation. A single-
mixture GMM silence model was trained simultaneously, to
isolate the nonspeech frames of each audio file. The number
of UBM mixtures was set to 64, since that is what achieved the
best performance in [13] for speech files of 3–10 seconds in
length (which is roughly the length of all utterances in our cor-
pus). As in [13], MAP adaptation was done on only the UBM
means, with a relevance factor of 16. The SVM for final na-
tiveness classification was the libSVM implementation, using a
linear kernel. In all experiments, training and testing was con-
ducted using a leave-one-out speaker level cross validation.

4.2. Prosodic

The results of nativeness classification based on proposed Ac-
cent Group level prosodic features are presented in this sec-
tion. All presented results are based on cross validation. In
order to make sure that nativeness is classified, rather than the
speakers being classified, in each iteration we set aside all the
utterances from one speaker and trained native and nonnative
models. Next, the utterances that were not present in training
were tested against the models. Finally, the number of all cor-
rectly classified utterances in all the iterations were divided by
the whole number of utterances to obtain an average accuracy.

We first present the classification results at the AG level,
which means that instead of each utterance, each Accent Group

Native Nonnative Overall

GMM 64.5 64.5 64.5

Decision Tree 64.2 64.5 64.4

SVM 68.5 52.1 60.3

Table 2: Classification results (%) on the Accent Group level,
before utterance level classification.

is classified as native or nonnative. This is a more difficult task
than classifying utterances. Table 2 shows the classification re-
sults. Three different methods were used to model and classify
prosodic features: GMM with 128 mixtures, Decision Tree, and
SVM with polynomial kernel. For training of SVM and Deci-
sion Tree models, the WEKA data mining software [15] was
used: SMO for support vector classifier and J48 for decision
tree classifier. The results show that GMMs and Decision Trees
perform better than SVMs.

Next, utterances were classified using a Random Forest
back end classifier to combine Accent Group scores. A Random
Forest is a collection of decision trees such that each tree de-
pends on an independently sampled random vector identically
distributed for all the trees in the forest [16]. Random Forest
is one of the most accurate learning algorithms available, and
our experiments show that it achieves better results than other
classifiers as a back end to combine scores. WEKA software
[15] was used for Random Forest training with 100 trees. Ta-
ble 3 and 4 show the classification results for 2-AG utterances,
and 3-AG utterances, respectively. In both tables, the first row
presents the results of combining GMM AG scores, the second
row shows the results of combining Decision Tree AG scores,
and finally the third row presents a fusion of GMM and Deci-
sion Tree AG scores. When fusing AG scores, we incorporated
the number of syllables for each Accent Group as additional
features to the GMM and/or Decision Tree scores.

5. Discussion
Between Tables 3 and 4, we see an overall improvement in clas-
sification accuracy for utterances with 3 AGs (rather than 2).
This is not surprising; not only do the proposed suprasegmental
classifiers have more features to work with in the 3-AG case,



Native Nonnative Overall

GMM 71.0 71.4 71.2

Decision Tree 81.2 81.0 81.1

GMM + Decision Tree 83.0 83.6 83.3

GSV baseline 56.0 91.0 72.1

Table 3: Classification results (%) for 2-AG utterances.

Native Nonnative Overall

GMM 84.8 62.5 75.7

Decision Tree 87.5 83.5 86.8

GMM + Decision Tree 90.6 86.9 89.1

GSV baseline 60.8 89.0 73.8

Table 4: Classification results (%) for 3-AG utterances.

but utterances with more AGs tend to have longer absolute du-
rations and more frames for adaptation on the GSV baseline.
This baseline’s performance is comparable to that reported in
[13], which achieved 66.7% accuracy using a 64-mixture GSV
on utterances of similar length to those in our corpus. How-
ever, their reported accuracy was much more balanced between
the native and nonnative populations, whereas in ours there is a
huge disparity in accuracy, with the nonnative performance ex-
ceeding that of the native speakers. This can be explained by
the unbalanced nature of our corpus: we had an order of magni-
tude more nonnatives than natives (see Table 1), while the data
used in [13] was balanced almost 50/50. With the speaker level
cross validation procedure in these experiments, the GSV base-
line was adversely affected by these corpus conditions, while
the non baseline methods were not. The reason is based on two
main differences between the proposed system and the baseline
in terms of features and classification method. First, the pro-
posed suprasegmental features on the AG level encode longer
term information that is less speaker dependent compared to
frame level features in the baseline. Second, modeling native
and nonnative AG level features, and then combining scores
from obtained models for utterance level classification intro-
duces more training samples compared to baseline, which trains
one supervector per utterance.

The most important outcome of Tables 3 and 4 is the supe-
riority of the AG based methods over the baseline in the over-
all classification results. This is notable especially considering
the much smaller set of features used in the AG based cases.
For each Accent Group, a total of only 11 features were used
to encode. And at most, only three such Accent Groups were
used for utterance level classification. Compare this to the base-
line’s 39 PLP features, and then the 2496 (= 39 means times 64
mixtures) features used in SVM utterance level classification.
Clearly there is very valuable nativeness information encoded
in these relatively few and simple suprasegmental cues.

6. Conclusion
This paper has demonstrated a new method for suprasegmen-
tal analysis of speaker nativeness, one that outperforms a base-
line system while using vastly fewer features. Because analy-
sis is conducted on the level of the Accent Group, this method
can be applied to any arbitrary sentence in a second language
practice curriculum, as long as the Accent Group segmentation

is known. One limitation of this work was the way in which
the Accent Groups were defined a priori by human annotators,
based on the acoustics of the prompts. For maximum flexibility
in the authoring of second-language practice content, future re-
search in this area will be well served to automatically segment
all utterances (or perhaps just the target prompts) into Accent
Groups, either using acoustic information as in [17], or based on
the syntax of the text alone, as in [18]. The relationship between
these Accent Group features and those derived from pseudosyl-
lables as in [13], requires further examination, as do features
based on other prosodic units. Future work could also include
applying the proposed nativeness classifier to a wider variety of
nonnative English speakers including more L1 languages.
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