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Abstract
Motivated by a desire to assess the prosody of foreign lan-
guage learners, this study demonstrates the benefit of high-
level syntactic information in automatically deciding where
phrase breaks and pitch accents should go in text. The con-
nection between syntax and prosody is well-established, and
naturally lends itself to tree-based probabilistic models. With
automatically-derived parse trees paired to tree transducer mod-
els, we found that categorical prosody tags for unseen text can
be determined with significantly higher accuracy than they can
with a baseline method that uses n-gram models of part-of-
speech tags. On the Boston University Radio News Corpus,
the tree transducer outperformed the baseline by 14% overall
for accents, and by 3% overall for breaks. These automatic re-
sults fell within this corpus’s range of inter-speaker agreement
in assigning accents and breaks to text.
Index Terms: syntax, prosody, ToBI, TTS, tree transducers

1. Introduction
Teaching categorical prosody to language learners - i.e. teach-
ing them which words in a phrase should be accented or should
mark a phrase break - can be a tricky problem for many reasons.
Not the least of these reasons is the multiplicity of acceptable
forms for accents and phrase breaks within a given piece of En-
glish text [2]. Take, for example, “Massachusetts got tough on
drunken drivers years ago.” This sentence was read aloud by
five different professional newscasters in the Boston University
Radio News Corpus (BURNC) [7]. Each of these speakers can
be considered an expert in producing native English prosody.
Yet, according to the Tones and Break Indices (ToBI) labeling
convention with which the corpus has been annotated [9], each
speaker realized the text with unique divisions into intermediate
(|) and final (‖) intonational phrases, and also spoke the words
with a unique distribution of pitch accents:

Massachusetts got tough | on drunken drivers | years ago. ‖
Massachusetts | got tough on drunken drivers ‖ years ago. ‖
Massachusetts got tough on drunken drivers | years ago. ‖
Massachusetts got | tough on drunken drivers years ago. ‖
Massachusetts | got tough | on drunken drivers years ago. ‖

If we assume that each word can precede a break and/or
take on an accent, then this eight-word sentence theoretically
has 48 = 65, 536 different allowable realizations. Given this
massive amount of potential variability among native speakers,
how can we hope to assess the prosody of a second-language
student of English?

In cases such as these, a syntactic parse of the sentence can
reveal underlying agreement in forms among these speakers:

S(NP(NNP:Massachusetts) VP(VP(VBD:got
ADJP(JJ:tough PP(IN:on NP(JJ:drunken
NNS:drivers)))) ADVP(NNS:years RB:ago)))

Here we see that in the surface forms produced by the five
speakers, sentence-internal breaks tend to fall at the beginnings
and ends of syntactic phrases, rather than within them. Also
note that all words are not equal candidates for pitch accents:
they are unlikely to be assigned to a preposition like “on,” but
should be expected on proper nouns (“Massachusetts”) and ad-
jectives (“tough”). With enough training examples, these pre-
liminary observations can be generalized into probabilistic rules
that can be used to predict breaks and accents in previously un-
seen text. Such a method can be used to create a reference stan-
dard of native prosody for teaching language learners.

This connection between syntax and prosody should not
come as a surprise. The theory behind the ToBI system of
prosodic transcription lends itself naturally to a hierarchical rep-
resentation of intonational phrases nested within intonational
phrases, corresponding roughly to the syntactic phrases delin-
eated by parse trees [8]. ToBI is a powerful system that al-
lows researchers to share a common vocabulary to describe the
prosodic landscape of an utterance. Prominence is indicated
with pitch accents that occur on stressed syllables, and phras-
ing labels indicate the flow pattern of a speaker’s production.
The power of this system lies in its ability to capture the nature
of connected speech in ongoing discourse, which includes dis-
fluencies and variable patterns of emphasis. And the link from
prosodic theory to syntactic structure is not unique to ToBI. This
approach mirrors traditional efforts in generative syntax to ac-
count for prominence assignment and distribution on the basis
of embedding and structural hierarchy [3].

In the field of text-to-speech (TTS) synthesis, the use of
syntactic information to assign natural phrase breaks to text has
been exploited to some lengths. Dominant past approaches have
either been rule-based, focusing primarily on constituency rela-
tionships such as verb adjacency [1], or data-driven approaches
working with n-gram models of POS tags and their associated
prosodic labels. Other data-driven studies have also incorpo-
rated constituency features into non-sequential models [4].

The present study is a continuation of the work in [11],
which first introduced the idea of representing sequences of
ToBI boundary tones and accents as trees, modeled with Regu-
lar Tree Grammars (RTGs) [6]. That study found that tree mod-
els could predict a missing ToBI label in a sequence of such
labels better than an n-gram model could, a first indication of
the explanatory power of the tree representation. However, syn-
tactic information was conspicuously absent from that study,
making it difficult to adapt it to tasks like break prediction from
text. Furthermore, while the ToBI system does naturally lend it-
self to tree-like representations, the labels themselves were not



train development test
speakers 3 2 2

sentences 771 128 89
words + punctuation 16,712 2721 1753

Table 1: Sizes of datasets used in this study.

originally derived to be treated like syntactic constituents - they
are tones or breaks that occur at fixed points in time, not phrase-
level units like the VPs and NPs of syntactic parse trees [8].

In this work, we intend to predict ToBI pitch accents and
phrase breaks from text alone using Weighted Regular Tree
Transducers (WRTTs). WRTTs are probabilistic models nor-
mally used in syntax-based machine translation [6]. In this case,
they are trained to “translate” syntax trees (derived directly from
text with an automatic parser) into one-level “trees” (i.e. se-
quences) of the most likely corresponding ToBI labels. This
method will be compared with the standard n-gram POS model
outlined in [10], in an effort to show the benefit of constituency
information above the POS level, as well as the benefits of the
tree transducer model. Such a system can function as one com-
ponent in a complete TTS system, generating the labels from
which the acoustics of synthetic speech are derived, or it can
work as part of an automatic prosodic assessment routine - the
accents and breaks determined here can serve as a reference
against which to compare an ESL student’s production. Our
hypothesis is that a tree-based approach will maximally account
for prosodic structure, where pitch accent and phrase break clas-
sification will benefit from knowledge of syntactic grouping.

2. Speech Data

The Boston University Radio News Corpus (BURNC) [7] con-
sists of recordings from seven professional newscasters reading
real radio news stories both in a laboratory setting and on the ra-
dio. Data from five of these speakers were annotated with ToBI
labels for tones and breaks, and the transcripts also include part-
of-speech tags, hand-corrected from an automatic tagger. For
the present study, the data from the five prosodically-annotated
speakers were divided into train, development, and test sets.
The sizes of these sets are given in Table 1. The dev and test
sets had unique speakers not seen in the train set, and the test
set consisted only of news stories not seen in the train or dev sets
(though the train and dev sets shared some news stories in com-
mon). To obtain syntactic trees of the text transcripts, we used
the lexicalized version of the Stanford Parser [5] with its de-
fault settings (i.e. we did not retrain it). This parser is reported
to have an F-score of 86.36% on the Penn Treebank corpus, and
we found that it was able to predict 93.17% of the BURNC’s
hand-corrected POS tags (omitting punctuation, of course).

Some idea of the inter-speaker agreement in assigning
breaks and accents to text was intimated in Section 1. The av-
erage pairwise speaker agreement was 78.72% (std = 4.75%)
for accents and 84.27% (std = 3.43%) for breaks (if a break
is defined as a ToBI index of 3 or above). This gives an up-
per bound on the level of performance we can expect for the
automatic methods explored here. The true agreement may be
higher or lower than these figures, considering that the inter-
annotator agreement for ToBI labels on the BURNC is reported
to be 91%, in terms of word-level presence vs. absence [7].

3. Predicting Prosodic Tags
3.1. Previous Work

The prior work that this paper builds on [11] used tree grammars
to model hierarchical structures of prosodic tones. Formally, a
Probabilistic Context Free Grammar (PCFG) specifies a set of
terminal and nonterminal symbols for which, beginning with
a starting symbol, a sequence of probabilistic tree production
rules for replacing the nonterminal symbols can be performed
[6]. The probability of a tree T is the product of the probabilities
of the n production rules α→ β that generated it,

P (T ) =

n∏
i=1

P (αi → βi|αi)

This of course assumes all rules (and all subtrees gener-
ated by those rules) are independent, allowing for the versatil-
ity of modeling a larger tree implicitly through a sequence of
smaller tree production rules. A Weighted Regular Tree Gram-
mar (WRTG) is a finite-state acceptor of PCFG trees, represent-
ing all nonterminal symbols through states in the recognition
network. Probabilities of production rules (i.e. state transitions
through the WRTG) are estimated from the training data as

P̂ (α→ β|α) =
Count(α→ β)

Count(α)

where Count(α → β) and Count(α) are the occurrences of
the production rule α→ β and the symbol α, respectively.

As it was originally proposed, this tree model would follow
the nested structure of information encoded by the ToBI tones:
pitch accents nested inside of intonational phrases, and inter-
mediate phrase boundary tones nested within phrase-final tones
(see [11] for an illustration). But the shortcomings of this past
approach lie in its computational complexity and in its removal
from syntax.

3.2. Proposed Model

A Weighted Regular Tree Transducer (WRTT) is a probabilis-
tic set of rules for top-down transformation of a Regular Tree
grammar (as defined in Section 3.1) into another form of Reg-
ular Tree Grammar [6]. Each transformation rule is modeled
as independent of all other rules, and so the best transforma-
tion of an input tree is the one that maximizes the product of all
the transformation rules that might be applied to that tree. By
removing tree constituents in the transduction process, a tree
transducer can also transform a tree into a string of terminal
symbols. Such a set of transformation rules can then be used
to turn syntactic parse trees into the corresponding most likely
strings of pitch accents or break indices.

As an illustration, let’s look at a piece of the running exam-
ple sentence: “on drunken drivers.” We can obtain this phrase’s
parse tree automatically from the text alone, using the Stan-
ford Parser [5]. The true syntax tree looks like this: PP(IN
NP(JJ NNS)) - a prepositional phrase (PP) with a preposi-
tion (IN) and a noun phrase (NP) inside of it. This tree can
then be fed into the transducer, which will convert it into a
string of prosodic tags. In the conventions of the tree automata
toolkit Tiburon [6], the first top-down transduction rule might be
q.PP(x0:IN x1:NP) → A q.x1 - this means, for a sub-
tree headed by constituent PP, with children IN and NP, this
can be transformed into the sequence A q.NP - a pitch accent
(A) followed by a sub-tree headed by a noun phrase. In trans-
forming an input syntax tree into a string of pitch accent labels,



the above production rule’s probability would be compared with
that of q.PP(x0:IN x1:NP) → N q.x1, in which the
preposition (IN) takes no pitch accent (N). The q.NP sub-
tree with children JJ (adjective) and NNS (plural noun) is then
transformed with one of four possible rules: q.NP(x0:JJ
x1:NNS) → N A, or q.NP(x0:JJ x1:NNS) → A A,
etc. Each terminal POS symbol in the tree is transformed into
one and only one prosodic tag. For deeper trees, this transfor-
mation process continues by applying rule after rule until no
more nonterminal symbols remain. To constrain the number of
rules in the model, we will use separate transducers for breaks
and accents.

This method makes use of higher-order syntactic informa-
tion (i.e. above the level of the part-of-speech tag) that could
help determine a prosodic tag. By transforming sub-trees into
strings, the model preserves much of the original tree structure.
In comparison, the baseline method (reproduced below) uses
only POS tags (no syntactic constituents) with sequential mod-
els. Our previous work (above) used tree grammars but no syn-
tax. And the work in [4] (not reproduced here) used higher-level
syntactic information outside of a tree model. The novelty of the
proposed approach is its use of tree models, on the assumption
that they are suited for tree-based syntactic features.

3.3. Baseline Method

The baseline method in [10] proposed assigning phrase breaks
to text by using an n-gram model for sequences of junctures
between words combined with a Markov model for a sequence
of POS tags given a corresponding juncture. The most likely
sequence of breaks could then be decoded from a sequence of
POS tags using a composition of these two networks and the
Viterbi algorithm, in a “noisy channel” framework.

Formally, if every adjacent pair of POS tags ck and ck+1

has a juncture jk = {B,N} (break or non-break) between
them, then the POS Markov model is defined as a sequence
of juncture states that emit probabilities of POS sequences,
P (Ck|jk), where by definition the POS context is constrained
to Ck = ck−1, ck, ck+1. Since this only models a limited win-
dow of POS tags, the n-gram model for the sequence of junc-
tures is defined as the set of probabilities:

P (jk|JN
k−1) = P (jk|jk−1, jk−2, . . . , jk−N+1)

where N is the order of the model (experiments in [10] found
N = 6 to perform best). The probability of a juncture jk given
the POS context Ck and the previous N junctures is then ap-
proximated using Bayes’ Rule:

P (jk|JN
k−1, Ck) ∝ P (jk|JN

k−1) · P (Ck|jk)

This baseline approach was previously only applied to assign-
ing phrase breaks to text [10]. For comparison with the present
experiments with pitch accents, the baseline method was ex-
tended as follows: we simply substitute the word variable
wk = {A,N} (accent or no accent) for jk in the equations
above. Note that, unlike the novel method proposed above, this
baseline doesn’t include information about phrase boundaries,
so the grouping of “on drunken drivers” into a prepositional
phrase (which might help determine a phrase break) is lost.

4. Experiments
The point of the experiments in this section is to show the per-
formance of the new method from Section 3.2 in comparison to

model accents non-accents overall
tree transducer PI 82.74 88.63 80.20

PD 82.61 89.09 80.58
GD 81.97 90.12 81.28

n-gram order 1 74.29 79.26 66.67
2 73.55 81.42 68.47
3 73.14 81.34 68.19
4 72.65 80.30 66.91
5 74.04 80.70 67.97
6 74.12 80.66 67.99
7 72.65 80.14 66.75
8 73.14 79.34 66.19

Table 2: Pitch accent % accuracy on the dev set.

model breaks non-breaks overall
tree transducer PI 68.33 89.64 81.69

PD 67.94 90.45 82.37
GD 67.71 91.58 83.40

n-gram order 1 75.24 83.81 77.58
2 70.00 85.61 78.06
3 71.75 85.17 78.06
4 72.38 84.49 77.54
5 71.75 84.57 77.46
6 72.70 84.65 77.78
7 73.49 84.33 77.66
8 72.38 84.45 77.50

Table 3: Phrase break % accuracy on the dev set.

a sequential baseline from Section 3.3 - it is a comparison of
high-level syntactic features in a tree model, versus low-level
syntactic features in a sequential model. There are a number of
elements in common between the two methods, in order to make
this a fair comparison. All experiments used the same training,
development, and test text, as well as the same part-of-speech
tag set from the Staford Parser. Punctuation symbols were in-
cluded in the training sets and models, but were omitted from
calculations in the final results. Following the conventions of
[10], breaks were defined as any transcribed ToBI break index
of 3 or above, and all ToBI pitch accents (whether high or low
or otherwise) were combined into one “accent” category. Ex-
periments on pitch accents and phrase breaks were conducted
and evaluated separately. POS tags for all data came from the
Stanford Parser and the text alone. Baseline models were im-
plemented as finite-state networks using Carmel, and all tree
transducers were implemented in Tiburon [6]. All experiments
were evaluated using the metrics defined in [10] - % breaks (or
accents) correct, % non-breaks (or non-accents) correct, and %
overall junctures (or words) correct.

The baseline n-gram models for sequences of breaks/non-
breaks (or accents/non-accents) were trained using the SRILM
toolkit with the default Good-Turing smoothing and back-
off. On the baseline POS Markov model that converted
POS contexts to ToBI labels, we used the same backoff
method described in [10] - for the probability of any sequence
P (ck−1, ck, ck+1|jk) not seen in the train set, we backed off to
P (ck, ck+1|jk) (or, if this was unavailable, to P (ck|jk)). Simi-
larly, backoff on the tree transducers involved including rules
such that, if a previously unseen tree were encountered, the
transducer model would still transform it, but without main-
taining the full original sub-tree structure. For example, if
the training set derived the rule q.PP(x0:IN x1:NP) →
N q.x1, its backoff rule would look like q.PP(x0: x1:)
→ q.x0 q.x1 - i.e. a sub-tree state headed by a preposi-
tional phrase with unknown children is transformed into states
headed by those children, whatever they are. This necessitated
the creation of many tree-independent rules for terminal sym-
bols, e.g. q.IN → A. After training, the probabilities of these



model accents non-accents overall
GD tree transducer 83.45 85.43 76.83

2nd-order n-gram 65.60 80.60 62.72

Table 4: Pitch accent % accuracy on the test set.

model breaks non-breaks overall
GD tree transducer 60.10 91.47 81.43
2nd-order n-gram 74.78 85.13 78.64

Table 5: Phrase break % accuracy on the test set.

backoff rules were found to be too high - after all, they represent
more general cases of the specific tree rules. And so the trained
backoff probabilities were divided by some factor to maximize
the complete model’s performance on the dev set (a factor of
10,000 was empirically found to be adequate).

Certain parameters of the models were tuned on the de-
velopment set, which consisted entirely of sentences already
seen in the training set, but uttered by new speakers. To
find the best baseline model, the order of the baseline n-gram
models for break or accent sequences was varied from 1 to
8 (as done in [10]) on the dev set. Similarly, three different
tree models were evaluated on the dev set: parent-independent
models (PI), parent-dependent models (PD), and grandparent-
dependent models (GD). PI models use the ordinary trans-
duction rules as outlined in Section 3.2 (e.g. q.PP(x0:IN
x1:NP) → A q.x1), in which each non-terminal con-
stituent in the tree is independent of its parent constituent one
level above it in the tree. PD models change these rules to in-
corporate information about the parent constituents of all non-
terminal constituents (e.g. q.PP|ADJP(x0:IN x1:NP|PP)
→ A q.x1 - this incorporates deeper tree information in the
syntactic features for decoding. The GD trees take it one
step further by incorporating parents and grandparents of each
constituent (e.g. q.PP|ADJP|VP(x0:IN x1:NP|PP|ADJP)
→ A q.x1). Performance of all these models on the dev set is
reported in Table 2 for accents and in Table 3 for breaks. Finally,
the best models from the development phase were evaluated on
the test set, which consisted entirely of unseen sentences. These
results are shown in Table 4 for accents and Table 5 for breaks.

5. Discussion
Overall, the tree transducer models outperformed the n-gram
baselines. On the dev set this was about 12% absolute improve-
ment for accents and about 5% for breaks, while on the test set
it was 14% for accents and 3% for breaks. Though the n-gram
models had a 14% higher break detection accuracy on the test
set, they performed worse overall when false insertions were
factored in. The tree transducer’s superiority in overall perfor-
mance is statistically significant: in both accent and break pre-
diction, McNemar’s test showed the effect of the tree transducer
models to be different than the effect of the baseline models
(p < 0.01). On both accents and breaks, only the tree trans-
ducer results fell within one standard deviation of the average
inter-speaker agreement as to how the sentences should be pro-
duced (as reported in Section 2). In other words, the tree trans-
ducer placed accents and breaks as accurately as a newscaster
would.

The best tree transducer model on the dev set was the one
that incorporated the deepest tree context: the grandparent-
dependent (GD) models. The best baseline models on the dev

set used 2nd-order n-grams, in contrast to the experiments in
[10] which concluded a 6th-order model to be best. There are
a number of differences between our baseline implementation
and the original in [10] (not the least of which being the signifi-
cantly larger train set in [10]). However, on a subset of BURNC
data (though not the present study’s specific test set) [10] re-
ported a 72.72% break accuracy - this is close to the 74.78%
reported here in Table 5. To be fair, the work in [10] only exam-
ined break (and not accent) prediction - perhaps this baseline is
not ideal for accents.

In analyzing the errors made by the best model - the GD
tree transducer - we see that it is weak in predicting accents for
most types of verb tags, and also for nouns. Predicting breaks
after nouns was also less reliable than for most other POS tags.
This suggests that the tree transducer methods would benefit
from clustering the POS tags into a smaller set - combining all
noun tags into one, all verb tags into one, etc. - as done in [10].

6. Conclusion
The connection between high-level syntax and categorical
prosody has been known for a long time. This study has shown
that it is sensible to model this connection using tree transducers
- they are capable of automatically determining where accents
and breaks should fall in unseen text more accurately than a
standard baseline model, and with accuracy comparable to the
average inter-speaker agreement in determining the same. Tree
transducers allow for much creativity and flexibility - recall the
improvement seen in transforming these models into parent-
and grandparent-dependent versions. Future work in this area
will benefit from modeling deeper and wider syntactic contexts
in the transduction rules. And read newscaster speech is only
the beginning - it will be interesting to see how this method
performs on spontaneous or nonnative speech.
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