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Abstract 
Rhythm patterns play an important role in the perception of 
second-language (L2) speech. This paper presents a novel 
approach to evaluating L2 speech rhythm using low-frequency 
spectral features inspired by the rhythmogram auditory model. 
In this paper we investigate several new feature sets for use in 
training rhythm-centric acoustic models. By capturing 
information over suprasegmental linguistic units appropriate 
for rhythmic analysis (including syllables and prosodic feet), 
these novel features can outperform traditional features in 
detecting rhythm errors on the ISLE corpus of learner English 
by 5-15% absolute. 
Index Terms: rhythm, language learning, stress, nonnative 
speech, auditory modeling, prosody 

1. Introduction 
Native-like rhythm patterns help make second-language (L2) 
speech intelligible. For example, the patterns of segment 
durations in English can indicate syllabic structure, lexical 
stress, and consonantal voicing distinctions, and hence can 
determine a word’s identity [7]. Studies that have artificially 
imposed L2 rhythms onto native speech have found the 
intelligibility threshold of the speech in noise to degrade by 
about 4 dB [14] while upsetting native listener performance on 
speech identification tasks [18]. 

Though much headway has been made in automatic 
phoneme-level analysis of L2 pronunciation, including more 
than 10 years of automatic segmental scoring comparable to 
inter-listener agreement in perceived pronunciation quality 
[13], the field of linguistic rhythm has been stymied by the 
lack of an analysis framework for unifying the many diverse 
perceptual and auditory cues that characterize rhythmic 
patterns. We follow [23] in regarding rhythm as the perceived 
patterning of sound in short-term memory, i.e. with 
rhythmically salient events perceptually occurring at intervals 
between 100ms and 3s (the low-frequency range in which 
listeners perceive temporal events as rhythmic). This is in 
contrast to the theory that rhythmic typologies arise from 
intrinsic phonotactic differences among languages [3], an idea 
responsible for the many segment-duration-based rhythm 
metrics that dominate today’s linguistic rhythm analysis 
literature, e.g. [15]. The reliability of these metrics and the 
validity of the theory behind them have been called into 
question increasingly often in recent publications, e.g. [1], 
though their main flaw may be the dependence on raw 
phonological durations in the absence of an auditory model. 

In this work, we argue that some type of auditory model is 
a necessary part of the rhythm analysis task, in order to 

pinpoint rhythmically salient events from the acoustic signal 
itself. It is well-known that the centers of perceived syllabic 
“beats” in speech — the so-called p-centers — do not in 
general align with phonetic or syllabic boundaries, and they 
are dependent on many disparate factors such as amplitude 
envelope and fundamental frequency [26]. Moreover, 
traditional rhythm metrics based on segment durations (such 
as the PVI, %V, varcoC, etc.) are not able to detect L2 rhythm 
errors per se, but rather are designed to estimate gross 
differences in rhythmic patterns between populations or texts. 
Though some work has been done in template-based scoring 
of durational patterns [19], a model to capture the perceived 
rhythmic abstraction of speech acoustics is still to be desired. 
Here we propose a version of such a model, based partly on 
the rhythmogram system of analysis first proposed in [22]. 
This model relies on low-frequency acoustics alone and 
requires no linguistic knowledge of the signal. It also yields 
auditory features that are straightforward to incorporate into 
existing acoustic modeling frameworks such as Hidden 
Markov Models (HMMs). As we hope to demonstrate, these 
auditory features, designed specially to capture rhythmic 
information, are appropriate for modeling suprasegmental 
units, yielding improved detection of rhythm errors.  

2. Low-frequency rhythmic information 
Applying low-frequency features to speech recognition is 
hardly a new idea. The widely-used RASTA method of 
auditory-based speech processing [4] and its extension as the 
modulation spectrogram [6] have shown that pre-emphasizing 
low-frequency temporal structure in the speech signal can lead 
to significant gains in recognition accuracy under noisy 
conditions. Low-frequency modulation components have been 
found useful in other tasks as well, such as speaker verification 
[27] and music-speech discrimination [5]. The importance of 
low-frequency information can be explained in terms of the 
phonological characteristics encoded in the temporal motions 
of the larger speech production organs — the tongue, jaw, 
velum, and lips — which require roughly 50-300ms to reach 
the extreme ends of their movements [24]. From the 
perceptual side, these slow articulation rates overlap with the 
scale in which inter-event onsets are perceived as rhythmic 
[23]. 

Strangely, low-frequency auditory features have figured 
relatively insignificantly in the literature specifically devoted 
to speech rhythm, partly due to the dominance of duration-
based rhythm metrics. There are exceptions: [25] used low-
frequency Fourier analysis without an explicit auditory model 
to measure rhythms in conversational speech, and [16] derived 
rhythm features from the Hilbert-Huang Transform of low-
frequency speech signals for emotional speech assessment. 



 

 

But the prior low-frequency analysis model closest to the one 
proposed in this paper is that of the rhythmogram [22]. 
Described as an “auditory primal sketch,” the rhythmogram is 
designed to detect the boundaries of perceptually salient 
rhythmic events via a full auditory model that includes an 
outer-middle ear filter, a filterbank representation of the 
cochlea, a model of inner-hair cell (IHC) firing in the auditory 
nerve, and a set of low-frequency modulation filters that 
approximates the multiresolution temporal response of the 
auditory cortex. Initially applied to impressionistic 
comparative analyses of speech, music, and poetry [21], more 
recent rhythmogram publications have used it to distinguish 
between hypothesized rhythm classes [9], to detect syllabic 
prominence [11], and to augment speech recognition lattice 
decoding [10]. For speed of computation in phrase-level 
analysis, [21] recommends replacing the cochlea and IHC 
stages with a rectified version of the raw speech signal, and 
then performing modulation filtering from there; this 
simplified approach has been followed in [11] and likewise 
will be adapted here. One aspect of the rhythmogram will be 
notably absent from this work: all prior rhythmogram-based 
publications have thrown away the rich spectral information in 
the modulation filter output in favor of detecting auditory 
“edges” in the signal and deriving features from those. Here 
we will use the full output of the auditory model as features 
for acoustic modeling.  

3. Proposed auditory model and features 
Our simple rhythmic auditory model (SRAM) is diagrammed 
in Figure 1. First the raw signal is rectified and passed through 
a first-order low-pass Butterworth filter with a passband edge 
of 50 Hz (to eliminate frequencies outside the range of 
rhythmic perception), and then resampled at 100 Hz (to reduce 
processing time). This decimated, low-frequency signal is 
intended to be a simplified approximation of summed IHC 
firing in the auditory nerve (hence the S in SRAM). It is next 
fed into a bank of 60 low-pass modulation filters of ever-
widening passband, a model for multi-resolution processing in 
the auditory cortex. To temporally align the filter outputs 
relative to one another, these filters were all designed to have 
the same linear group delay (20 samples) using the least-
squares IIR filter design algorithm proposed in [8].  Beginning 
at 0.3 Hz, the 60 filter passband edges were spaced by one 
semitone, with the widest passband edge falling at about 9 Hz, 
roughly covering the temporal range of rhythm perception 
from [23].  

An example waveform and its SRAM output are displayed 
in Figure 2, alongside a conventional spectrogram over the full 
frequency range. The SRAM auditory filters are ordered with 
increasing passband edge from top to bottom. Rhythmically 
salient events (i.e. the p-centers of each syllable) are 
immediately visible (red = strongest). Essentially this is a 
graphical depiction of relative auditory prominence across the 

utterance on several simultaneous scales, as cued by low-
frequency rhythmic information alone. Hierarchical phrasing 
is also suggested by the turquoise halos that appear to connect 
and organize the pattern of rhythmic events: 

((fresh) ((vege- (ta- bles)) (are best))) 
Though the relevant information is mostly found in the bottom 
half of this SRAM example, the entire range of filters is still 
necessary to capture the full spectrum of human rhythmic 
perception (as outlined in Section 2). Note that the perceptual 
centers do not necessarily align with syllabic onsets or nuclei  
(e.g. the center of “are” appears to be in the /ɹ/), so the SRAM 
is doing more than just finding the low-frequency “blobs” in 
the traditional spectrogram. Note also that the design 
requirement of identical phase distortion across the 60 
modulation filters has removed the tendril-like forward-
leaning tendency seen in prior studies’ rhythmograms. Though 
[22] argues that this forward sweep indicates temporal 
masking effects in the short-term auditory store, it is more 
likely an artifact of the nonlinear group delay in [22]’s 
filterbank and can be problematic for waveform-feature 
alignment. 

As input to conventional HMMs for abstracting speech 
acoustics, we now propose three sets of features derived from 
our auditory model. First is the raw output of the model itself, 
over the 60 modulation filters (SRAM), as shown in Figure 2. 
A direct extension would be to include delta and acceleration 
estimates on the frame level (SRAM_DA), to capture temporal 
dynamics. To reduce the size of this set, we tried Principal 
Component Analysis (PCA) on the SRAM_DA features, but 
this weakened the model’s discriminatory power, suggesting 
that all 180 features were in fact useful. Due to the visible 
hierarchy of beat patterns in the SRAM output (see Figure 2), 
and inspired by work in HMM-based handwriting decoding, 
we propose extracting local gradient histogram features [17] 
from the SRAM image (SRAM_LGH) by treating time as 
horizontal pixels and the 60 modulation filters as vertical 
pixels. Using a left-right sliding window 18 pixels wide (i.e. 
18 samples in the 100 Hz resampled signal) with a 1-pixel 
overlap, we split each window into a 3x3 grid of cells and sum 
the pixel-level gradient magnitudes over 6 angular bins, 
leading to 3x3x6=54 features per window (this is lower 
resolution than the 128 features proposed in [17], since our 
shapes are generally simpler than handwriting). In a sense, the 

 
Figure 1: Diagram of the proposed auditory model. © 2012 Rosetta 
Stone Ltd. 

© 2012 ROSETTA STONE LTD. 

 

 
Figure 2: The waveform (top) aligned with its spectrogram 
(middle) and the output of our proposed auditory model 
(bottom), for the phrase “Fresh vegetables are best.” The 
dotted lines denote syllable boundaries. [Note: this is a color 
image] 



 

 

LGH features are intended to capture the multiscale rhythmic 
“handwriting” of speech, including its temporal dynamics. 
When used in HMMs (which ordinarily lack an explicit 
duration model), all of these feature sets are intended to 
encode the prominence and phrasing patterns that characterize 
iconic rhythms; implied timing is secondary. These novel 
feature sets are summarized in Table 1. As a baseline, we also 
calculated MFCC and PLP sets — traditional auditory features 
that are not rhythm-specific. These included energy, delta, and 
acceleration coefficients, in 39 dimensions. Since the SRAM 
features are resampled to 100 Hz, the proposed and baseline 
sets are not defined on the same scale. Fusing them into a 
larger feature set is nontrivial, and we will reserve that for 
future work. 

4. Rhythm error detection experiments 
To compare the proposed feature sets and evaluate their 
rhythm analysis power relative to the baselines, we now report 
the results of experiments in detecting errors in lexical stress 
patterns — one class of rhythm errors believed to be a source 
of negative L1 transfer effects [12].  

4.1. Corpus 

The Interactive Spoken Language Education (ISLE) corpus [2] 
is designed for developers of English language learning 
systems. It comprises 18 hours of read speech from 46 
intermediate learners of British English, split evenly between 
native Italians and Germans. Many of the utterance prompts 
were designed to accentuate minimal-pair stress contrasts (e.g. 
“Children often rebel against their parents”), leading to some 
common L2 rhythm mistakes. We used only Blocks D, E, F, 
and G, which come automatically aligned and manually 
transcribed for phoneme and stress errors. 

4.2. Method 

Detecting errors in L2 lexical stress patterns requires training 
models for stress categories on the syllable level, or for 
categorical stress patterns above the syllable level. Using the 
features described in Section 3, we trained the following sets 
of suprasegmental HMMs: 

� STR: a simple set of binary stress models to describe 
any syllable (i.e. either str or unstr)  
� STR-V: as in STR, but with each syllable’s nuclear 
vowel context (e.g. “having” = str-/æ/ , unstr-/ɪ /)  
� FOOT: stress pattern across the syllables of a prosodic 
foot (e.g. a three-syllable left-headed foot would map to 
the model str-unstr-unstr)   

Note that fully context-dependent syllable models were not 
trained due to sparsity in the ISLE corpus. 

 HMM training used a standard flat-start initialization and 
iterative reestimation procedure. Since all monosyllabic words 
in the ISLE corpus come erroneously transcribed as stressed in 
a phrase context, we designed the model reestimation so that 
any function word could be re-labeled as unstressed, if that 
improved the likelihood of the data given the model. Acoustic 
silence and garbage models were also trained for each set. 
Because the syllabic length of a foot can vary considerably, 
the number of states in each foot-level model was determined 
by assigning 5 states to the first syllable and 4 states to any 
additional syllables. All other HMMs used a standard 5-state 
left-right topology, with the number of Gaussian mixtures per 
state varying from 2 to 256 according to the number of 
training instances available. The train set consisted of 36 
speakers, and the test set had the remaining 10 (both split 
evenly between Italians and Germans). To isolate the effects 
of rhythm errors, we removed test utterances with segmental 
mispronunciations. 

To target rhythm variations over phrase-level patterns, 
stress error detection was performed on the level of the 
sentence prompt. A rhythm score was estimated as a standard 
likelihood ratio for each sentence, where the numerator was 
the likelihood of the target prompt, and the denominator was a 
decoding loop over all HMMs in the given model set. For the 
FOOT models, the denominator loop was actually a sequence 
of loops, one for each foot in the target: each loop would 
decode only feet the same length as, or one syllable shorter 
than, the corresponding foot in the target prompt sequence. A 
higher rhythm score would indicate the learner’s stress pattern 
was closer to that expected by the transcribers and demanded 
by the text. Error detection was done by comparing these 
likelihood ratios to a varying global threshold. The equal error 
rates (EER) are given in Table 2, over all combinations of 
feature sets and models. 

4.3. Discussion 

The goal of these experiments was to compare the novel 
rhythm-based feature sets to some baseline auditory features 
(MFCCs and PLPs), over various model time scales and 
contexts. In Table 2, we see that the STR-V set, the only one 
that uses phoneme-level context, is also the only one where the 
MFCC and PLP features outperform the three SRAM sets. For 
STR and FOOT models, which are based on stress baseforms 
alone, the novel features perform better than either MFCC or 
PLP (these improvements are significant on the 95% level 
using a one-tailed t-test). The temporal derivatives in the 
SRAM_DA and SRAM_LGH sets improve over SRAM alone, 
but SRAM_LGH requires considerably fewer features per 
frame. 

Table 1. Proposed auditory features. See Section 3 for details. 
feature set description dimensionality 

SRAM output of model 60 

SRAM_DA …with first and 
second derivatives 180 

SRAM_LGH 
local gradient 

histogram of model 54 

  

 

Table 2. EER (%) over various model-feature combinations. 
 

 model 
feature set STR STR-V FOOT 

SRAM 47.74 45.02 39.74 
SRAM_DA 45.02 42.53 37.17 

SRAM_LGH 45.57 45.02 34.99 

MFCC 52.49 37.48 67.50 
PLP 50.08 32.81 50.31 

 



 

 

The interpretation of Table 2 seems clear: the SRAM is 
more appropriate for modeling stress patterns over 
suprasegmental levels — syllables and feet — while MFCCs 
and PLPs can better quantify the short-time auditory spectra 
that characterize phonemes. This explains the huge 
improvement in MFCC and PLP performance with the 
addition of vowel context as part of the model (i.e. between 
STR and STR-V). The baseline spectral features may also be 
better at capturing subtle differences in vowel quality that 
accompany syllabic stress shifts in rhythm errors. But the 
suprasegmental aptitude of the novel features is most clearly 
seen in the improvement in the SRAM performance when the 
linguistic unit grows to the FOOT level (differences between 
FOOT and STR models for the SRAM sets were significant on 
the 95% level). The performance difference between the two 
best setups — PLP/STR-V and SRAM_LGH/FOOT — was 
not statistically significant, indicating that the baselines and 
SRAMs have comparable performance when paired with the 
appropriate model. As these are sentence-level results, how 
they would compare to state-of-the-art performance on the 
syllable level is unclear, though there is still room for other 
features such as word-level context and explicit pitch and 
duration features [11],[20]. 

5. Conclusion 
While MFCCs and PLPs are the auditory features of 

choice for phoneme-level acoustic modeling, low-frequency 
spectral information can be more appropriate for the 
suprasegmental scales of speech rhythm patterns. In the 
absence of segment-level contextual info, our proposed 
auditory features outperform the baselines in verifying 
sentence-level L2 rhythms by 5-15% absolute. 

SRAM features are far simpler to compute than MFCCs or 
PLPs. Unlike duration-based rhythm metrics, SRAMs offer a 
perception-based analysis of rhythm, they naturally lend 
themselves to models of linguistic abstraction such as HMMs, 
and they can be used to detect L2 rhythm errors. And unlike 
any of the feature sets mentioned here, they can pinpoint the 
perceptual centers of syllabic beats (recall Figure 1), for a 
richer rhythmic analysis of which this paper is only the 
beginning. Future work can extend this model by introducing 
other perceptual cues (e.g. pitch and duration, phonological 
and syntactic information, etc.) and by using SRAM features 
to “parse” perceived rhythmic groupings, as hinted by the 
visible hierarchy in Figure 1. 
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